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INTROD

Recent developments in high rise
extensive use is being made of shear wi
as the basic load carrying system. Ef
buildings must include the capability
carried by each shear wall component,
This particular investigation is conce
teristics of general three dimensional
by inter-connected walls such that the
of lateral and torsional deformation.

A method for the static analysis
buildings using small order matrices a
tinuous connection technique for the a
has been presented elsewhere (3,4,9)(I
the analysis developed in this investi,
and torsional vibration characteristic
Coupled and uncoupled modes of lateral
shear wall apartment building are exam
ding or neglecting shear wall interact
parameters are varied and the effect o
is examined. In addition, the modal s
mine the peak stresses and deformatio
typical earthquake, using a standard de
dynamically determined maxima are comps
determined design quantities, using the
provisions of the 1970 National Buildin

STIFFNESS OF ENT

The building is considered to be ¢
connected by floor slabs. The lateral
structure at N reference levels, normal
multiples of floor levels for tall buil
vertical reference axis, the resultant
ing at floor level "i" is positioned at
as shown in Figure 1. In this paper, i
act in one direction, e.g. the y direct
applied at the reference axis at floor
force Pj and a twisting moment Tj = P;a
and twisting moment must be carried by

M

1= kfl Fik
M

N k=zl Piic

CTION

uilding construction indicate that
11s, inter-connected by floor slabs,
icient and economic design of such

f determining the portion of load
uring both static and dynamic loading.
ned with the dynamic behaviour charac-
shear wall structures, characterized
resulting behaviour is a combination

or complete multi-storey shear wall
d incorporating the use of the con-
lysis of coupled shear wall assemblies
I). This method is incorporated into
ation in order to determine the lateral
of tall shear wall structures.
and torsional vibration of a typical
ned for the alternate cases of inclu=-
on., Several geometrical and stiffness
these variations on the natural periods
perposition technique is used to deter-
when the structure is subjected to a
3sign earthquake response spectrum. The
ired with each other and with statically
loads calculated from the earthquake
1g Code of Canada (11).

'IRE STRUCTURE

omprised of M wall assemblies, inter-
loads are assumed to be applied to the
ly at floor levels, but can also be at
ldings. For a given position of the
lateral force P; applied to the build-
distance z from the co-ordinate axis,
t is assumed that all lateral loads
ion in Figure 1. The resultant system
"i" therefore consists of a direct

For equilibrium, the foregoing force
the M wall assemblies, such that

)

(2)

III Numerals in parentheses refer to o
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where P, and T, are the lateral force and twisting moment respectively
carriedlkby walikassembly "k" at reference level "i", and located at a dis-
tance from the vertical reference pxis. It is assumed that any wall
assembly "k" can sustain lateral loads and twisting moments, and that these
are given by

[kp]

[kT], {

{P}k

{T}

vh (32)

K 6 (3b)

where {P} and {T} are the vectors o lateral load and twisting moments at
the N reference levels, {y]k and{6 re the corresponding displacement and
rotation vectors, and [KP] “and [ are the corresponding stiffness mat-
rices, all for wall assembfy et

The objective of this particular stage of the analysis is to develop
stiffness relationships between the forces and twisting moments at the
reference axis (designated by the vectors {P}and {T}) and the corresponding
displacements and rotations of the reference axis (designated by the vectors
{y}and{6). The compatibility relationship between the displacements of
wall assembly "k and those of the reference axis are given by

Iyl = {3} + z, (o) (4a)

fe}, = {e} (4v)

Substituting the above into the assembly relationships given by Egs. 3 yield
the following

(P}, = (kPR Iy} + =z [kP] {6} (5a)

tmd, [KT]k{e

Expanding equilibrium equations (1) and (2) to all N reference levels and
then substituting the above into thesd equilibrium equations yields

’ K )
FL o (2 B LT (6)
{ } [Kal'; K22 { 4 }

(5b)

in which "
al - o
H 7
Kpd = 2 F[KP] = [Ky]
1= 1 2 & + 1
K,.] = =z Xp KT
(a2 k=1 ke kz=1 ()

From the above, it is clear that [
is symmetrical and the reference axi§
general, these sub-matrices will vanis
the shear centre.

and [K% ] will vanish if the structure
located at the axis of symmetry. In
if the reference axis is located at

Stiffness relationships of the form shown in Eq. 3 have been developed
for assemblies of different kinds, and a "catalogue" of such relationships
can be used to enable the overall structure stiffness relationship of Eq. 6
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to be written for a structure containing
The assemblies used in
the planar coupled shear wall, and a dou
stiffness properties are discussed in re

different kinds.

Stiffness relationship for general asym
walls, including the effects of torsion
(6) and (13).

DYNAMIC A

The equations of motion for the fr
motion consists of combined bending and

t {_g—} tRa

If the reference axis is the centre of
mass matrix M is given by

[M] (]

0 i[14]
in which
{M] = the diago
floor lev
and [19] = the d?ago

If the shear centre coincides with the

then sub-matrices [K,,] and [K,,] are b
R 2

uncoupled sets of eqiiations, one for la

In the general coupled case, the a
natural frequency w, when substituted i
equation satisfied by 2N different valu
eigenvector or mode shape. As discusse
and torsion of thin-walled beams (5), t
often be classified as predominantly fl
character. These predominantly flexura
uencies are, in certain situations, very
culated by neglecting the coupling betw

If the coupling between bending an
when the centre of mass and the shear ¢
matrices [Klz] and[K,.] in Eq. 7 can be
situation tG that of an uncoupled syste
of eigenvalues and eigenvectors result,

When the structure is subjected to

equation of motion is similar to Eq. 7,
tains the force terms, which is of the

F(£)} = - {

a multiplicity of assemblies of

this analysis are the plane wall,

ble channel coupled box wall, whose
ferences (3),(8),(9), and (10).
etrical single walls and coupled

1 warping, are discussed in references

ALYSIS

e vibration of a structure whose
torsion may be written in the form

g‘l

ass at each floor level, then the

0 (7)

(8

al matrix of masses at each
1

al matrix of mass moments of
each floor level

entre of mass at each floor level,
th zero, and Eq. 7 reduces to two
eral motion and the other for torsion.

sumption of harmonic motion at a

to Eq. 7, yields a characteristic

s of w, each having a corresponding
with reference to coupled bending
ese frequencies and mode shapes can
xural or predominantly torsional in
and predominantly torsional freq-
nearly equal to the frequencies cal-
en bending and torsion.

torsion is extremely weak, e.g.

ntre are nearly coincidental, sub-
neglected, thereby reducing the

In such a case, two separate sets
one set each for bending and torsion.

an earthquake ground motion, the
except that the right hand side con-
orm

(9



in which u is the earthquake acceleration as a function of time and { m} is
the column vector of floor masses. The analysis considered herein is the
normal modal superposition technique, utilizing the response spectra for the
particular earthquake, as described in|detail in a number of references (1,2).

BASIC EXAMPLE STRUCTURE

The basic example structure is a 20 storey apartment building, whose
floor plan is shown in Figure 2. Each|storey has a height of 8,75 ft. The
floor slabs are 8 in. thick and all walls are 6 in. thick except the end
walls, which are 8 ip. thick. The modulus of elasticity of concrete is
assumed to be 3 X 10° p.s.i. and its unit weight is assumed to be 135 1b./ft.3.
The method presented in reference (12)|is used to approximate the effective
widths of the floor slabs acting as deep beams spanning between walls.

For the dynamic analysis, it is agsumed that the structure is subjected
to a design earthquake with a maximum acceleration of 0.06 g, ard has charac-
teristics given by Housner's average response spectrum (7). The damping is
assumed to be equivalent to 5% of critjcal viscous damping. Maximum stresses
and deformations for each of the cases|is computed by combining all modes
using the root mean square summation.

A comparison is made with a static analysis conducted according to the
earthquake provisions of the 1970 Natignal Building Code of Canada. With
reference to these provisions, the strycture is assumed to be in zone 3,
?aving an importance factor of 1.3, and using the K factor for a box system

K = 1-33)0

DYNAMIC PROPERTIES

In computing the dynamic properties for the basic example structure, two
different mathematical models for strugtural stiffness are compared. The
first of these includes the effect of donnecting beams as interacting elements
in determining the properties of combined planar walls and channel groupings;
this model is designated as "with wall |interaction'". The second model is the
converse of the above, in which the effect of the connecting members is not
considered, and is designated as '"no wgll interaction'".

The dynamic properties for both the "interaction' and "no interaction”
models are computed assuming no coupling between bending and torsion; the
significant mode shapes and periods are given in Figzures 3 and 4. The
properties for the coupled bending and |torsion case are also computed for the
model with wall interaction and are shgwn in Figure 5. Natural periods are
also compared in Table 1 for all three combinations. From this Table it can
be seen that the wall interaction has 3 significant effect on the natural
periods, whereas the coupled and uncoupled periods are nearly identical. For
this reason, further calculations are glways based on the model with wall
interaction,

The natural periods of the structure were also computed for several
cases in which the torsional stiffness [KT] for the different assemblies
were neglected. The resulting coupled |and uncoupled natural periods are
shown in Table 2. These results show that the torsional stiffness of the
assemblies used in this structure have |a very small overall effect, having
minor effects on the fundamental period and imperceptible effects on the
higher periods. Neglecting all torsional stiffnesses results in an 8%
difference in the fundamental period, whereas neglect of only the planar
wall assemblies results in only a 1% difference in the fundamental period.
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The geometry was modified slightly | in several stages in order to study
the effect of different eccentricities gn the natural periods of the structure.
The five stages are as follows, with the eccentricity of line of shear
centres relative to centre of mass noted:

Basic example structure, but with wall thicknesses of

assemblies A and B increased|to 1 ft. (ave. eccentricity = 2.2 ft.)

I.
II. Basic example structure (ave
III.
1.6 ft.)
Iv. Basic example structure,
increased to 8 in. (ave.
V. Basic example structure,

eccentricity = 0,56 ft.)

eccentricity = 2 ft.)

As in stage I, but no opening in assembly A. (ave. eccentricity =

but |with wall thickness of assembly E
eccentricity = 1.3 ft.)

but | with assembly B removed {(ave.

The resulting variation of natural periods is shown in Table 3.

Stages I, II and IV are very near to each other, with a maximum diffe-

rence of 4% in the fundamental natural period.
geometrical change was the thickness of|the various assemblies.

In these stages, the only
Stage III,

even though producing a relatively small difference in eccentuity, shows

rather large period changes in all mode
stage is achieved by changing the basic
interesting coupled planar wall system
have a much larger stiffness.
as indicated in Table 3. Stage V has b
but this seems to have little effect on
I and II) although the eccentricity chai

The natural periods for the basic
using differing numbers of reference le
to the normal reference level at each f]
made for totals of 10 and 5 reference 1
periods is shown in Table 4. From this
ence levels produces natural periods ha
values as for 20 reference levels. Som
the higher periods, when only 5 referen

Several additional variations in ¢
in Table 5. These include the case of &
same floor plan and a twenty storey strm
constructed of lightweight (110 1lb./ft.
structure the effective average eccentr
quently one would expect the ®upled and
identical, which is as indicated in Tab]
thirty storey structure are only slight
storey structure, which indicates that 1
of a single cantilever of varying lengtl
be expected due to the complex interact
floor levels. The effect of the lightw
reduction in fundamental period for a 2
exactly analagous to the situation in a
of which is proportional to the square 1
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This woul

+» This is due to the fact that this
stiffness of assembly A from an

to a single planar wall, which would

ld clearly result in decreased periods,
gen produced by eliminating an assembly,
the periods (which are near to Stages
nge is relatively large.

pxample structure were also computed
vels in the computation. In addition
Joor level, calculations were also
evels. The resulting variation in
table it can be seen that 10 refer-
ving exactly the same calculated

e differences arise, particularly with
te levels are used.

alculated natural periods are shown

i thirty storey structure having the
gcture with the same floor plan but

) concrete. For the thirty storey
lcity is reduced to 0.05 ft. Conse~
uncoupled periods to be very nearly
le 5. However, the periods for the
ly higher than for the basic twenty
the behaviour is not analagous to that
h and the same stiffness. This would
jon of the various assemblies at all
pight concrete is to produce a 10%

0% reduction in weight. This is
single mass oscillater, the period
root of the mass.




RESPONSE TO

Maximum deflections and stresses|in the component wall assemblies were
computed using five mathematical models, namely

A. Dynamic, coupled bending and torsion, with wall interaction.

B. Dynamic, uncoupled bending and torsion, with wall interaction.

C. Dynamic, uncoupled bending only, with wall interaction.

D. Dynamic, uncoupled bending and torsion, no wall interaction.

E. Static, 1970 National Buildi

Code of Canada, with wall interaction.

Typical maximum deflection curves are |shown in Figure 6 for the end wall

assembly and for one of the interior

all assemblies. In both cases, the

maximum deflections computed by the static method are lower than those com-
puted by any of the dynamic methods. [Dynamic model D yields the largest

deflections, which differ considerably

from any of the other combinations.

This would be anticipated since it is [the only case in which wall interaction
is neglected, and the neglect of wall [interaction has already been shown to
have a profound effect on the dynamic jproperties.

Deflections from model A would b
From the ligures, it can be seen that
mation of the maximum deflection. Co

expected to yield the best results.
del B provides a reasonable approxi-
ring the curves for the end walls

and for the interior walls shows that the torsional component has little

influence on the deflection of the int
the deflection of the end walls.

rior walls, but has a large effect on

Figure 8 shows the rotation curves for those models which include torsion,
i.e. models A, B and D. Again models A and B are reasonably near each other,
whereas model D shows much larger rotations. This is consistent with previous
observations relative to the lateral deflections.

Figure 9 shows the maximum longithdinal stresses at the base of the
structure for several typical wall assemblies (due only to lateral load).
The stress behaviour is consistent with the deformations shown in the previous
figure. Mathematical model D yields the largest stresses, whereas models A
and B are reasonably similar. Statically computed stresses based on the
National Building Code of Canada are similar to those computed from model A

in those sections of the building near
lower at the extremities.

the centroid, but are considerably

CONCLUSIONS

The building studied in this inve

tigation is not symmetrical but does

have a very low eccentricity (centre of mass is only two ft. from the line of
shear centres). However, the analysis| has shown that even in this case
torsion has a significant effect on the dynamic behaviour of the structure.
This is due to the fact that the predominantly torsional and predominantly
bending periods are very near to each ¢ther. It is recommended that the
coupled periods be computed for all shear wall structures, even though they
appear to be nearly symmetrical. If the fundamental periods are near to each
other, then the design calculations should include both the effect of bending
and torsion. However, in buildings with small eccentricities, the uncoupled
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periods and mode shapes can provide a ggod approximation which will reduce
the required effort considerably.

Furthermore, it has been shown that the interaction between walls
provided by the connecting beams is extremely important and cannot be neg-
lected. This would be expected, since static investigations (3,9) have
shown that this interaction changes the|fundamental behaviour of the structure.
The periods computed when neglecting this interaction are vastly different,
so that the resulting modal maxima determined from the design response
spectra can also be vastly different, depending upon the sensitivity of the
response spectrum in that range of periods. In the particular example given
here, this neglect of interaction would | result in a conservative design;
however, this will not always be the case, since it depends on the degree of
interaction, the range of periods, and the nature of the design response
spectrum in that range of periods.

The parameter variations have shown several significant features. Firstly,
the effect of torsional stiffness of pldnar assemblies is negligible and even
other assemblies have relatively minor effects on the natural periods. How-
ever, this is only true when the resisting assemblies are widely spaced so
that the torsional resistance due to lateral distance from the shear centre
is significant.

Changes in eccentricity have little effect on the natural periods if
these are due to wall thickness changes, but have significant effect if due
to changes in the basic structural action. Consequently, eccentricity is
not a single parameter from which one can deduce the effect on the dynamic
properties.

Results also show that fewer reference levels can safely be used to
reduce computational effect without seriously affecting the validity of the
results. The required number of reference levels depends upon the accuracy
with which the strucutral deformations are to be represented; 10 levels is
probably adequate for structure in the 10 to S50 storey range.

The comparison of the dynamically computed maximum displacements and
stresses with those computed statically| from the National Building Code
indicates that the static values are approximately correct whenever torsion
is not important, but cannot of course take into account magnification due to
torsion. However, the static values are certainly not conservative, even at
relatively low implied ductility factors, since the comparison is made with
earthquake excitation into the dynamic model at the lowest value of peak
acceleration within that particular zone. Consequently, it is recommended
that, in order to ensure safety, that tall shear wall structures in Canadian
Zone 3, or its equivalent elsewhere, be|designed using the dynamic approach.
If a reasonable estimate of the probable once in a hundred year peak accele~
ration is available, then this should be used as input rather than the zone
boundary peak acceleration.

prov1d1ng the facilities to do the computations presented hereln. Thanks is
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FIGURE.2 FLOOR PLAN OF EXAMPLE STRUCTURE
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FIGURE 4 MODE SHAPES AND PERIODS
UNCOUPLED MODES,NO WALL INTERACTION
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DISCUSSION OF PAPER NO. 15

DYNAMIC BEHAVIOUR OF COUPLED SHEAR WALL STRUCTURES
by

A.C. Heidebrecht, A.W. Irwin

Written Discussion by: Dr. Ing. Riko Rosman, Faculty of Architecture, Zagreb,
currently on leave at the University of Alberta, Edmonton

NOTE: The reader is directed to References 3 and 5 given at the end of
Dr. Rosman's discussion for an explanation of the symbols used here.
Some aspects of this discussion also refer to Paper No. 14.

The exact dynamic investigation of the simple perforated shear wall is
highly involved. Thus, an approximate method of determining the most important
dynamic property, the fundamental period of the free vibrationms, of perforated
shear walls and complete shear-wall building structures is highly desirable.l 2 3

In the following let us consider lateral vibrations of shear-wall structures
symmetric in plan. Figure 1 shows some examples. If the simplifying assumptions

1. the mass of the structure is uniformly distributed along the structure
height and

2. the vibration profile is similar to the lateral displacement profile due
to a uniform lateral load

are made, the principle of conservation of energy may be applied to determine

the vibration period:
H
A? dx
T = 1.108 N — L
J A dx
4 &
Notation:

T vibration period [sec],
q weight of the structure per unit height [kips/ft}],
A lateral displacement due to a unit uniform lateral load [ft].

Any other mass distribution along the structure height may be considered
analogously, provided a correspondingly distributed lateral load is applied
when determining the lateral displacement profile.

The displacements A are easily found using the continuous-connection
concept.

Figure 2 shows some examples of shear-wall structures statically indeter-
minate to the first.degree. The form of the lateral-displacement profile
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depends, in this case, only on two dimensionless quantities: on the stiffness
parameter A of the structure and on the correction coefficient B which takes
into account the effect of the extensional deformations of the piers adjacent
to the connecting-beam bands. Figure 3 shows the form of the lateral-
displacement profiles for some pairs of A and 8.

Formula (1) yields
T=n. HaFi (2)

H structure height [m],

K bending stiffness of the structure [Mpm?], equal to the sum of
the bending stiffnesses EI of all piers, sec/vm

n period coefficient.

Figure 4 shows the diagram of the period coefficient n.

The lowest curve (B = 1) may also be applied for the approximate deter-
mination of the period highly redundant shear wall structures which are not
too slender, so that the effect of the extensional deformation of the piers
may be neglected.

Numerical investigations reveal, that with slender structures the effect
of the extensional deformations of the pilers may be considerable.

Concluding let it be remarked that both the formulae (1) and (2) and the
period coefficient diagram (4) are valid not only for lateral vibrations but
also for torsional vibrations of shear-wall structures symmetric in plan.

In this case, the weight q of the structure is to be replaced by the corres-
ponding weight moment of inertia and the lateral stiffness parameters of the
structure by the corresponding torsional stiffness parameters.
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